FCT/Unesp – Presidente Prudente Departamento de Matemática e Computação

Introdução à Visualização Parte 1

Prof. Danilo Medeiros Eler danilo.eler@unesp.br

Sumário

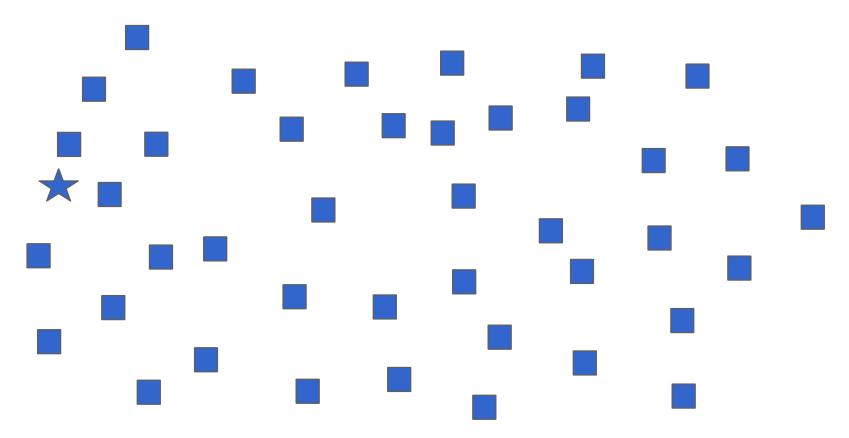
- O que é Visualização?
- Porque Visualização
- História da Visualização
- Visualização nos Dias Atuais
- O Processo de Visualização
- Referências

Do dicionário Michaelis, Moderno Dicionário da Língua Portuguesa, Editora Melhoramentos, 1998, São Paulo:

"Visualizar 1 Tornar visual ou visível. 2 Ver uma imagem mental; figurar mentalmente."

"Visualização 1 Transformação de conceitos abstratos em imagens reais ou mentalmente visíveis. 2 conversão de números ou dados para um formato gráfico, que pode ser facilmente entendido."

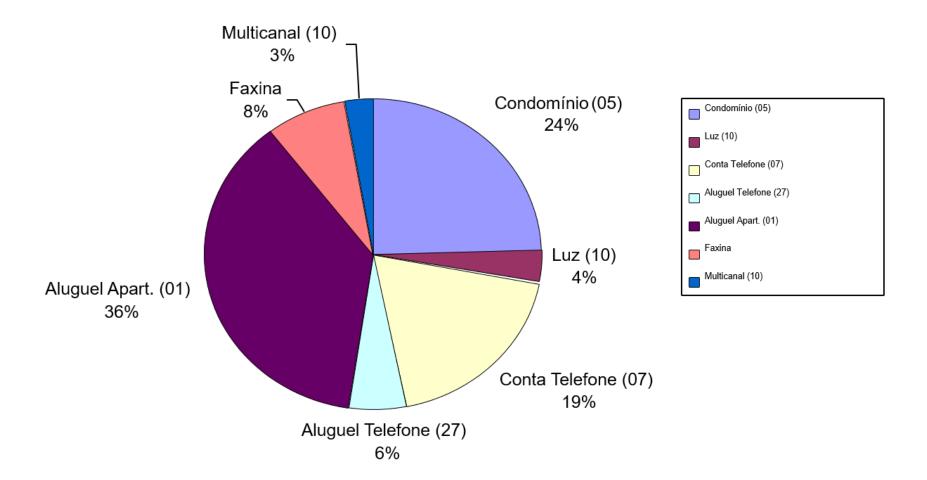
- Visualização não está relacionada ao computador
 - Ben Shneiderman 1999: "o propósito da visualização é o insight, não as imagens"
 - Principais objetivos desse insight
 - Realizar descobertas
 - Verificação de hipóteses
 - Tomada de decisões
 - Explicação de questões concretas



- A Visualização está relacionada com a cognição do ser humano
- Visualizar é algo que fazemos naturalmente.
- O sistema visual humano é:
 - O sentido com maior capacidade de captação de informações por unidade de tempo
 - Rápido e paralelo
 - Treinado para reconhecer padrões

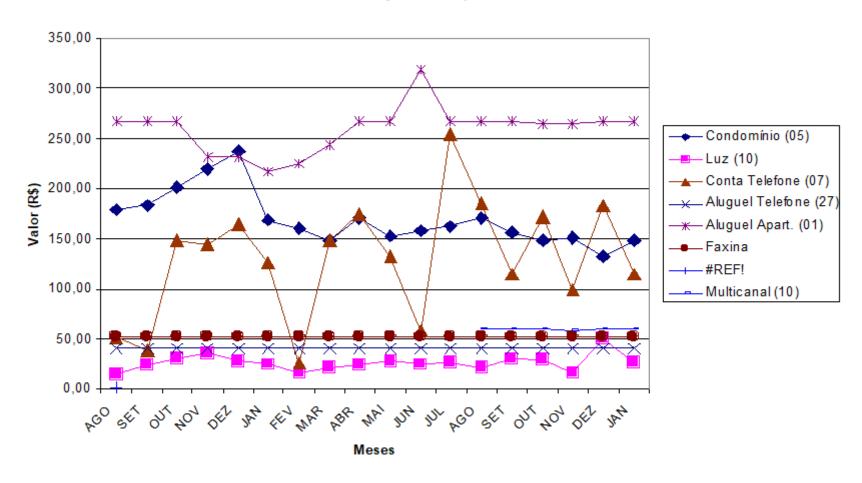
Onde está a estrela?

Um exemplo


Despesas de casa

5	Contas	AGO	SET	OUT	NOV	DEZ	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	JAN
6	Condomínio (05)	179,61	183,81	201,21	219,73	238,10	168,90	160,10	148,00	170,35	152,55	157,70	162,25	171,25	155,85	148,90	150,35	132,20	148,32
7	Luz (10)	14,58	23,50	30,24	35,94	27,30	24,19	15,89	21,60	23,84	27,13	24,19	26,09	21,25	29,55	28,68	15,38	49,77	26,44
8	Conta Telefone (07)	51,40	38,35	149,00	143,95	164,10	126,68	25,49	148,88	174,76	132,51	56,90	254,52	185,74	114,42	171,74	98,16	183,39	114,57
9	Aluguel Telefone (27)	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00
10	Aluguel Apart. (01)	267,08	267,08	267,08	232,08	232,08	217,08	225,00	243,55	267,08	267,08	319,00	267,08	267,08	267,08	265,00	265,00	267,08	267,08
11	Faxina	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40
12	Multicanal (10)													59,90	59,90	59,90	57,90	59,90	59,90
13	Total	605,07	605,14	739,93	724,10	753,98	629,25	518,88	654,43	728,43	671,67	650,19	802,34	797,62	719,20	766,62	679,19	784,74	708,71

Despesas Totais até o Momento

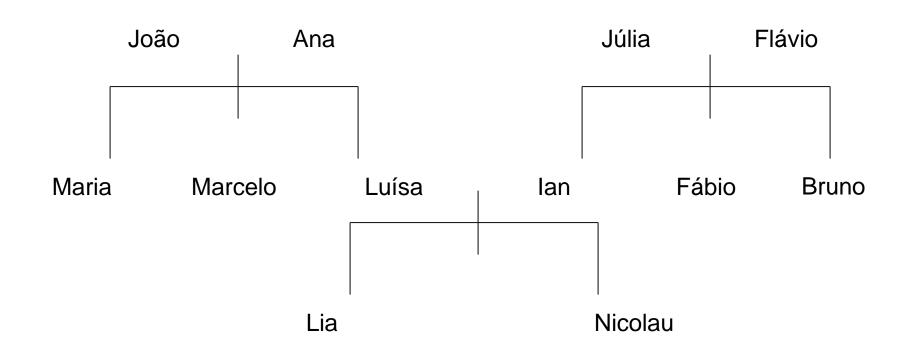


Um Exemplo

Evolução das Despesas

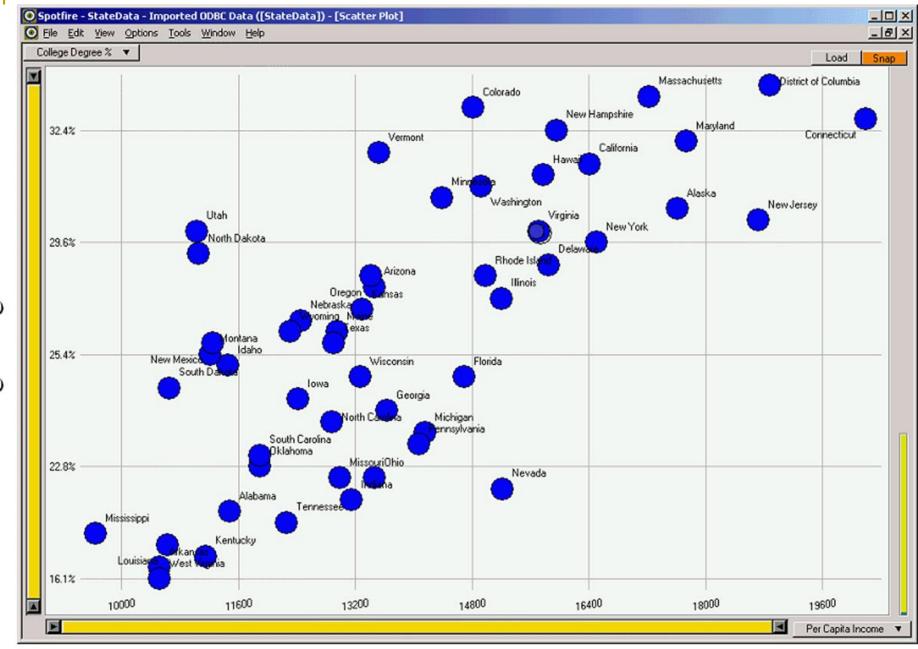
Outro Exemplo

Pessoa1	Pai-P1	Mãe-P1	Pessoa2	Pai-P2	Mãe-P2
Maria	João	Ana	Marcelo	João	Ana
Marcelo	João	Ana	Luísa	João	Ana
Luísa	João	Ana	Maria	João	Ana
lan	Júlia	Flávio	Fábio	Júlia	Flávio
Fábio	Júlia	Flávio	Bruno	Júlia	Flávio
Bruno	Júlia	Flávio	lan	Júlia	Flávio
Lia	Luísa	lan	Nicolau	Luísa	lan


Qual o nome dos avós de Lia?

Outro Exemplo

Exemplo - Árvore Genealógica



Mais um exemplo

- Qual é o estado com maior renda?
- Há alguma relação entre a renda e a escolaridade?
- Existem outliers (discrepantes, exceções)?

		Load Snap	Minnesota	30.4%	1438
State	College Degree %	Per Capita Income	Mississippi	19.9%	964
Alabama.	20.6%	11486	Missouri	22.3%	1298
Alaska	30.3%	17610	Montana	25.4%	1121
Arizona Arizona	27.1%	13461	Nebraska.	26.0%	1245
			Nevada	21.5%	1521
Arkansas	17.0%	10520	New Hampshire	32.4%	1595
California	31.3%	16409	New Jersey	30.1%	1871
Colorado	33.9%	14821	New Mexico	25.5%	1124
Connecticut	33.8%	20189	New York	29.6%	1650
Delaware	27.9%	15854	North Carolina	24.2%	1288
District of Columbia	36.4%	18881	North Dakota	28.1%	1105
Florida.	24.9%	14698	Ohio	22.3%	1346
Georgia	24.3%	13631	Oklahoma	22.8%	1189
Hawaii	31.2%	15770	Oregon	27.5%	1341
			Pennsylvania	23.2%	1406
ldaho	25.2%	11457	Rhode Island	27.5%	1498
Illinois	26.8%	15201	South Carolina South Dakota	23.0%	1189 1066
Indiana.	20.9%	13149	Tennessee	20.1%	1225
lowa.	24.5%	12422	Texas	25.5%	1290
Kansas	26.5%	13300	Utah	30.0%	1102
Kentucky	17.7%	11153	Vermont	31.5%	1352
Louisiana	19.4%	10635	▶ Virginia	30.0%	1571
Maine	25.7%	12957	Washington	30.9%	1492
Maryland	31.7%	17730	West Virginia	16.1%	1052
Massachusetts	34.5%	17224	Wisconsin	24.9%	1327
Michigan	24.1%	14154	Wyoming	25.7%	1231

Per Capita Income

- É a representação de um domínio utilizando gráficos, imagens, animações, interações para apresentar dados, estruturas e o comportamento de um conjunto de dados
- Técnicas são utilizadas para compreender os dados e extrair conhecimento

Telea 2015 Williams et al. 1995

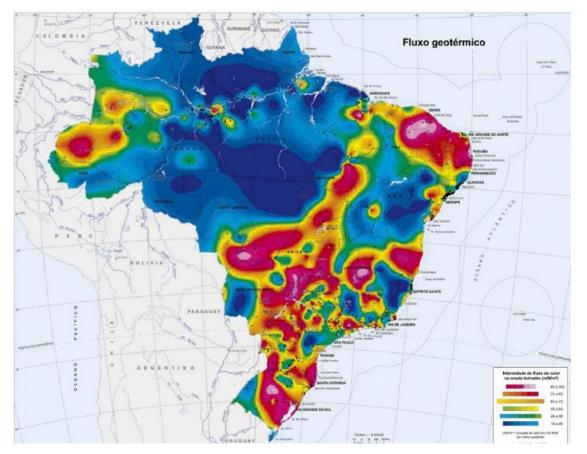
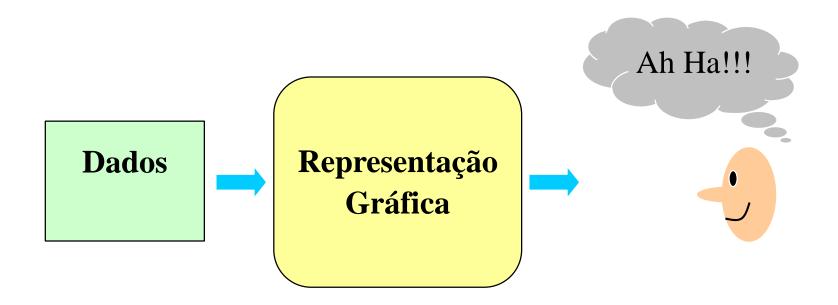

- Ward et al (2010) definem Visualização como a comunicação da informação utilizando representações gráficas
 - Imagens podem ser utilizadas como mecanismos de comunicação
 - Uma única imagem pode conter muita informação e pode ser processada mais rapidamente quando comparada com uma página com palavras ou números

Imagem contendo a intensidade de fluxo de calor no

Brasil



http://1.bp.blogspot.com/-RXLzm9dsX6w/Ufem_gobJal/AAAAAAAAAAAHog/5-aqGi-4zCU/s1600/geot%C3%A9rmico.jpg

O propósito da visualização é obter 'insight' por meio de representações gráficas interativas, considerando vários aspectos relacionados a algum processo no qual estamos interessados

Adaptado de (Robert Spence, 2007)

Por que estudar visualização?

Motivação

- Muito fácil coletar e armazenar dados
- Muito difícil processar, analisar e interpretar todos os dados coletados, identificar o que é relevante
- Volume dos dados muito grande
- Dimensionalidade dos dados muito alta
- Natureza dos dados muito diversa
 - Registros, textos, imagens, vídeos, voz, ...
- Desafios para pesquisadores
 - Como auxiliar na análise desses dados

Grande volume de dados

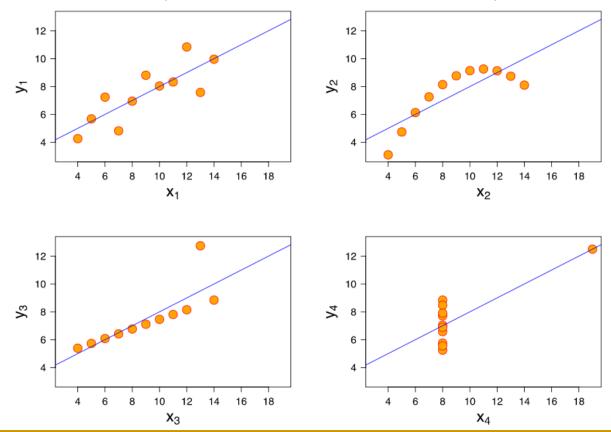
- Em 2007 existiam cerca de 30 milhões de câmeras de vigilância somente nos EUA
 - Mais de 4 bilhões de horas de vídeo toda semana
 [J. Vlahos, 2008]
- Em 2002, 5 exabytes de nova informação impressa, magnética e ótica foi produzida
 - Equivalente a 37000 cópias de todos os 7 milhões de livros da Biblioteca do Congresso americano
 [Lyman & Hal, 2003]

Grande volume de dados

 Na média, atualmente uma pessoa em uma grande companhia troca cerca de 177 mensagens por dia [Tanaka, 1998]

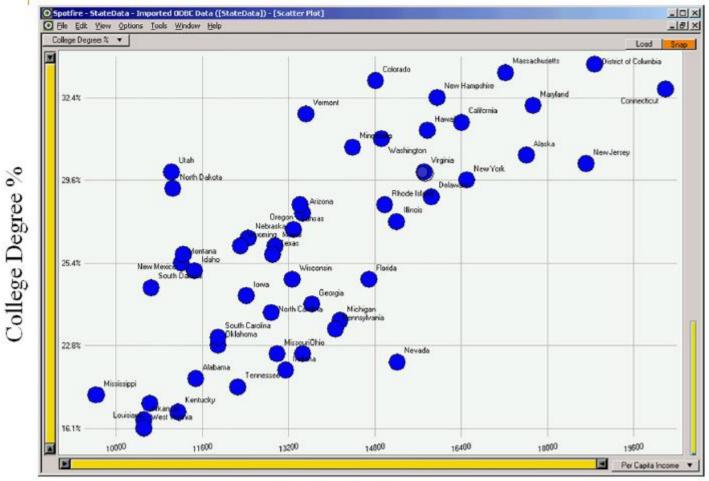
Uma única edição do New York Times atual contém mais informação do que uma pessoa comum no século 17 teve contato em toda sua vida [Tanaka, 1998]

Por que estudar visualização?


- Muito pode ser realizado com estatísticas, mineração de dados, aprendizado de máquina, entre outras técnicas
- A Visualização possibilita explorar questões que não são diretamente efetuadas
 - Auxilia na formulação de novas questões
 - Distribuições, correlações e tendências são melhor compreendidas quando visualizadas

Por que estudar visualização?

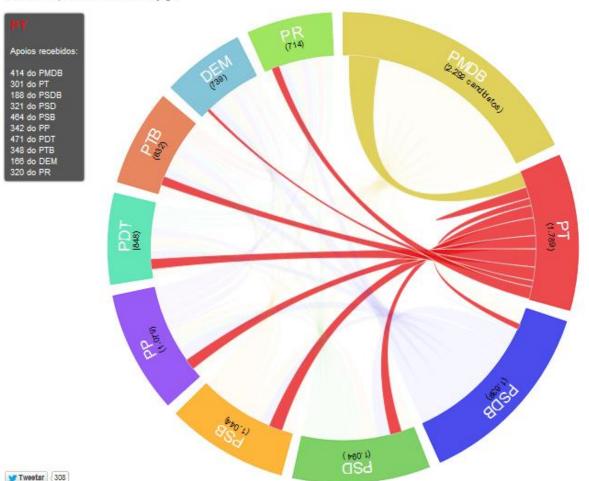
 Quarteto de Anscombe: quatro conjuntos de dados que aparentam ser idênticos quando descritos por certas técnicas de estatística descritiva (como a média e a variância)


Visualização no dia-a-dia

- A visualização tem sido empregada para apoiar ou substituir a comunicação de informações
 - Tabelas em jornais e sites
 - Mapas de metro
 - Mapas climáticos
 - Diagnósticos médicos
 - Dados financeiros
 - **-**

Visualização no dia-a-dia

Per Capita Income

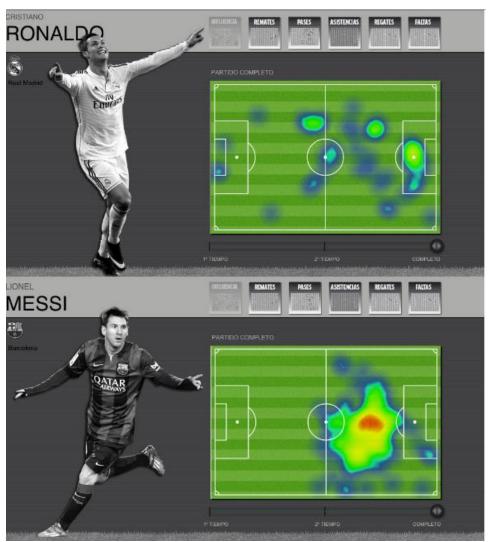


O JOGO DAS COLIGAÇÕES

Escolha um partido e veja os apoios que ele recebe e dá às outras siglas na eleição de prefeito

PSDB costura mais alianças que o PT nas eleições para prefeito

O PSDB entra nas eleições para prefeito com menos candidatos que em 2008, mas ocupa o segundo lugar em apoios recebidos, atrás do PMDB e à frente do PT. Já DEM, PP, PDT, PTB e PR, que também perderam candidatos, são pequenos até em número de apoios e recebem menos do que oferecem. Escolha um partido na roda e bom jogo.

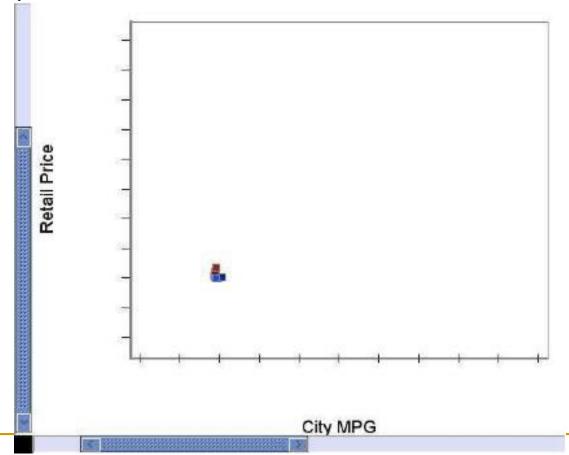

A espessura da borda indica a quantidade de apoio recebido

Visualização no dia-a-dia

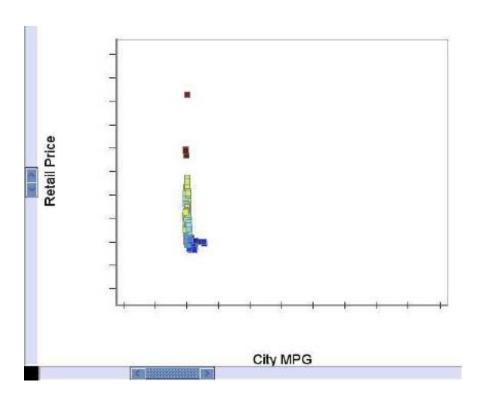
 Mapas de calor indicando o posicionamento de jogadores em campo

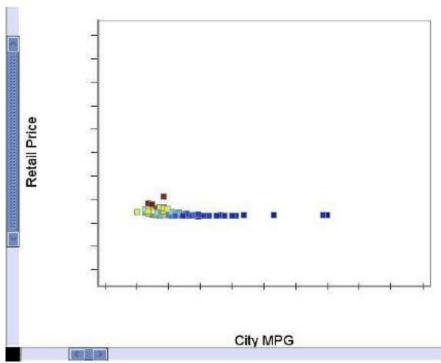
Visualização no dia-a-dia

- Em cada caso, a visualização apresenta uma alternativa para a informação textual ou verbal
- A representação gráfica promove uma descrição mais detalhada da informação
- O processamento da informação é realizado de forma paralela, ao invés da sequencial (texto ou áudio)

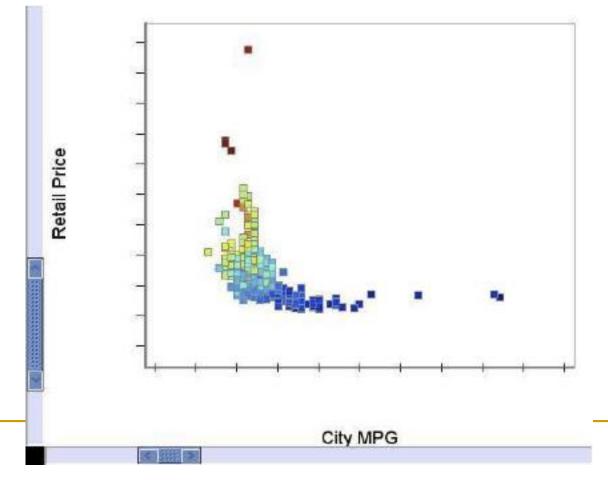


- A razão mais óbvia é porque somos seres que usam o sentido da visão para obter e compreender informações
- Representações gráficas criadas para apresentar dados, pode influencia a tomada de decisões
 - Quanto é que a apresentação dos dados pode influenciar nas tomadas de decisão?

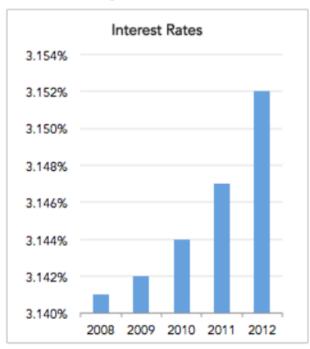

- Nessa figura os dados são apresentados em uma escala uniforme em ambos os eixos
 - Não é possível identificar entre os dados

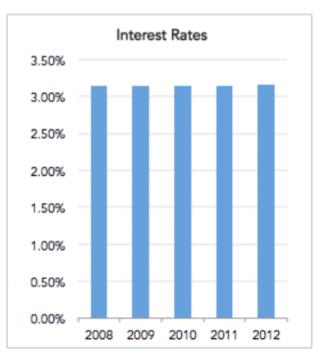


- Nessas figuras a escala foi alternada
 - Agrupamentos são criados na direção da escala



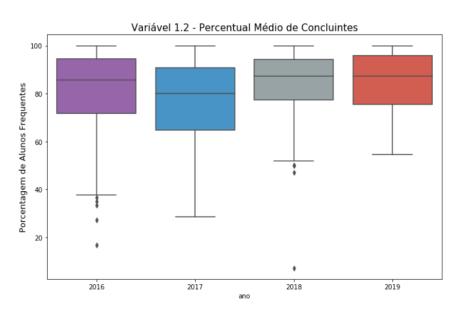
 Nessa figura são utilizados os valores originais dos dados, ou seja, os valores de mínimo e máximo dos eixos X e Y

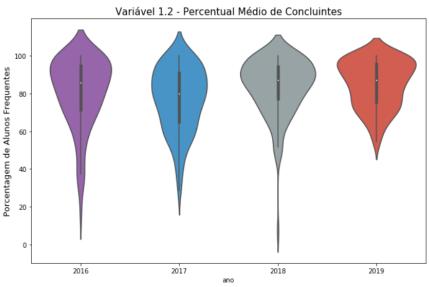

- Modificando a escala em que os dados são apresentados, podemos produzir gráficos diferentes
- Observando as três primeiras figuras apresentadas, poderíamos dizer que os dados apresentam uma relação linear
- Entretanto, observando como eles realmente são (última figura), verificamos que são inversamente proporcionais



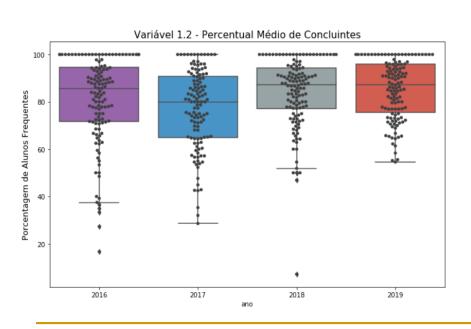
- A visualização pode ser utilizada para distorcer a verdade
 - Pode ser utilizada com esse propósito

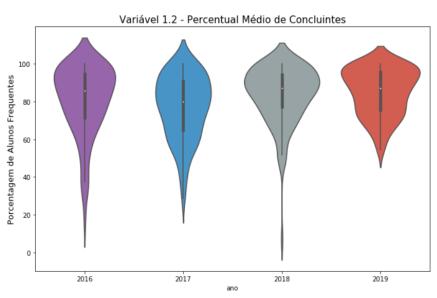
Same Data, Different Y-Axis



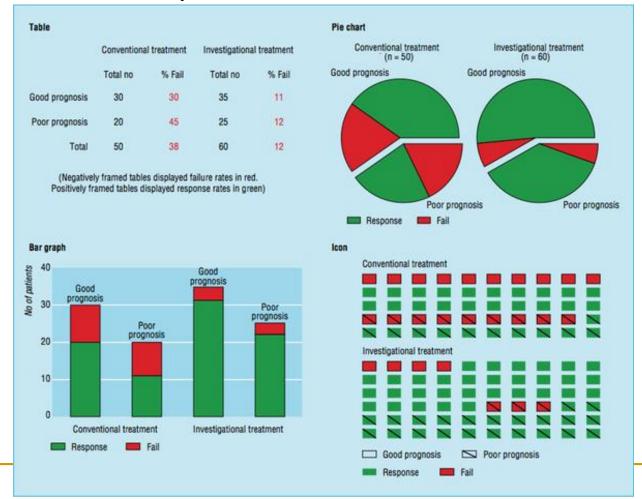


- Podemos usar diferentes maneiras de representar os dados
 - Podem impactar o resultado obtido na tomada de decisões



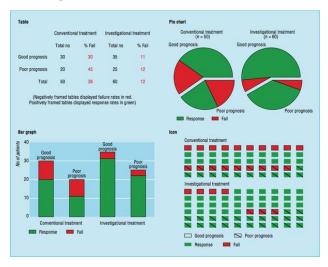


- Podemos usar diferentes maneiras de representar os dados
 - Podem impactar o resultado obtido na tomada de decisões


- Em 1999, Linda Elting e outros pesquisadores apresentaram resultados fictícios de dois tipos de tratamentos clínicos (um convencional e um sendo investigado)
 - Um dos tratamento era muito melhor do que o outro
 - Se o novo tratamento n\u00e3o fosse efetivo, ele deveria ser interrompido
 - Para tomar a decisão de continuar ou não, foram utilizados quatro tipos de representações gráficas criadas a partir dos dados dos pacientes

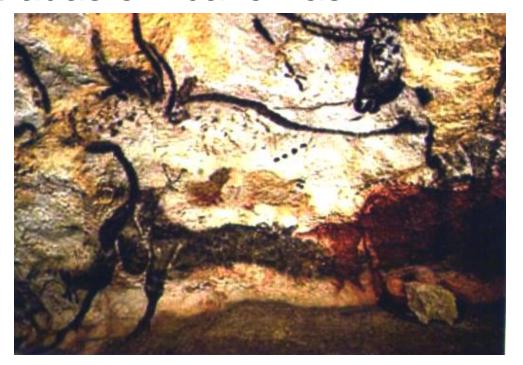
Porque a Visualização é Importante?

 A cor verde indica que a droga teve resposta positiva e o vermelho indica que nada ocorreu



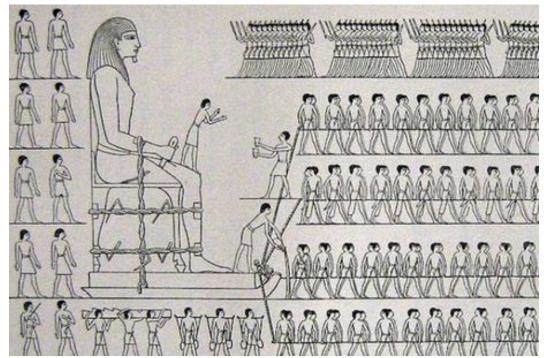
Porque a Visualização é Importante?

- Após o estudo com os usuários, a decisão de parar o experimento variou significantemente, dependendo da apresentação dos dados
- As decisões corretas foram
 - 82% com os ícones (inferior à direita)
 - 68% com as tabelas
 - 56% com os gráficos de pizza e de barras


Porque a Visualização é Importante?

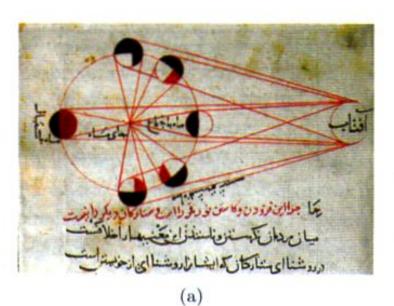
- Claramente, a escolha da visualização impactou a tomada de decisões
- No estudo, foi observado que a maioria (21/34) preferiu a tabela e muitos foram contra a visualização baseada em ícones
- Isso também enfatiza que a visualização é importante para fazer uma boa apresentação dos dados, entretanto, a preferencia do usuário está fortemente envolvida

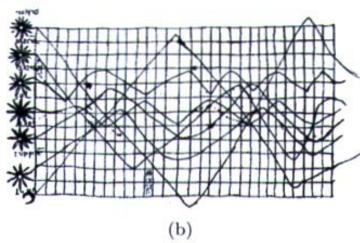
 As primeiras técnicas para fazer o registro gráfico e apresentar informação são encontradas em cavernas


 Também, povos usaram figuras para representar palavras e informações

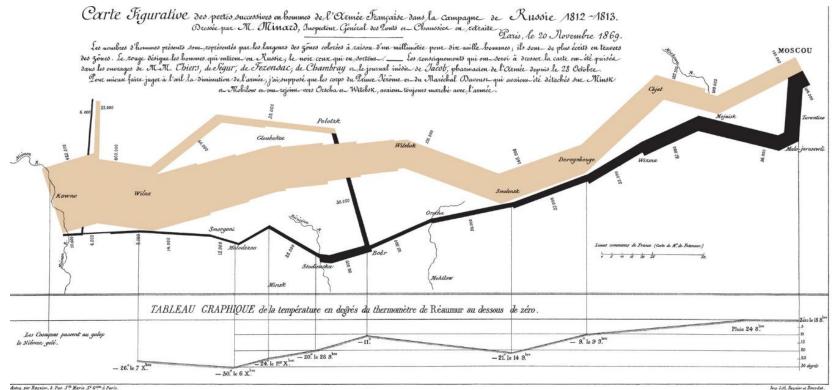
- Também, povos usaram figuras para representar palavras e informações
 - Por exemplo, a escrita egípcia

https://noticias.terra.com.br/ciencia/cientistas-desvendam-misterio-de-construcoes-no-egito-antigo,9e717a5cb7cfad7615801e47677d99c9n9orRCRD.html


 Rotas do império romano foram registrada em mapas, com registros de distância aproximadas e alguns pontos chaves

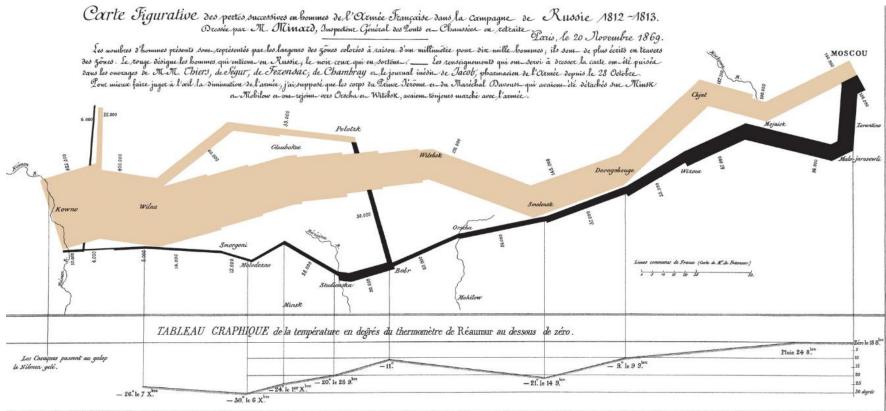


 Em 1600, series temporais já descreviam as fases da lua (a) e os movimentos dos planetas (b)

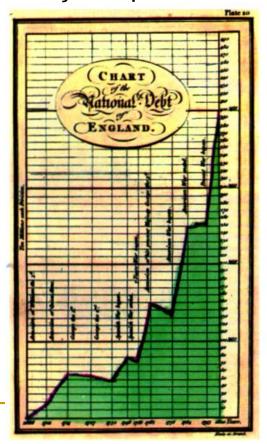


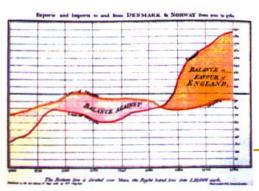
- Em 1663, foi utilizada a visualização para evidenciar o local da origem do surto de cólera em Londres
 - Foi observado a quantidade de mortos perto da bomba d'água

- O mapa de Minard registrou a desastrosa marcha do exército de Napoleão de Kowno até Moscou
 - O exército saiu com 400 mil soldado e retornou com 10 mil exército (400 mil para 10 mil)



https://upload.wikimedia.org/wikipedia/commons/2/29/Minard.png

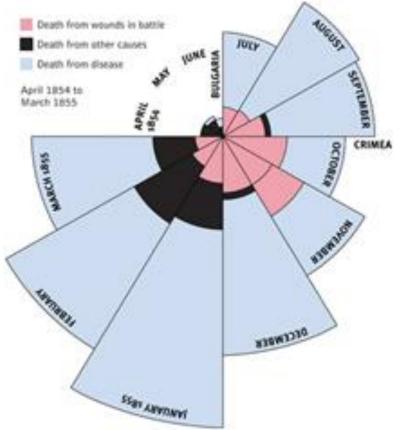

- Seis tipos de dados são representados em duas dimensões
 - tamanho da tropa, distância, temperatura, latitude e longitude, direção da viagem e a localização relativa em datas específicas



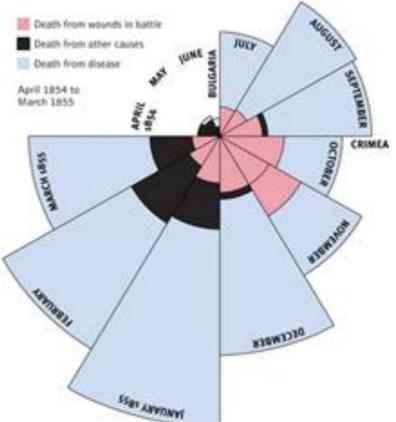
Ing. Lith Regain at Dourde

DEPARTAMENTO DE

- William Playfair apresentou o debito nacional sobre o tempo (1786)
 - Um dos primeiros registro do uso de eixos para abstrair informações que não são georeferenciadas

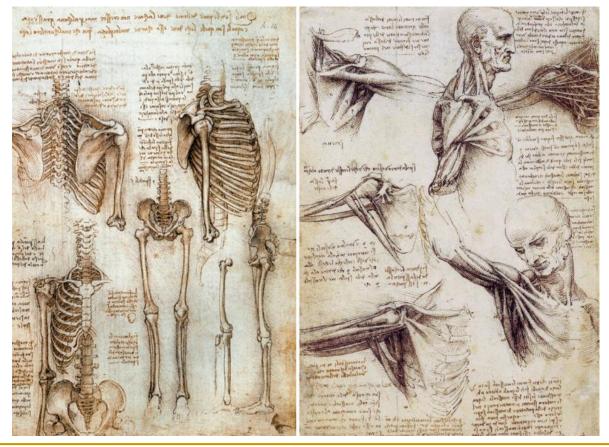


 Florence Nightingale, enfermeira britânica, apresentou mensalmente as mortes no exército

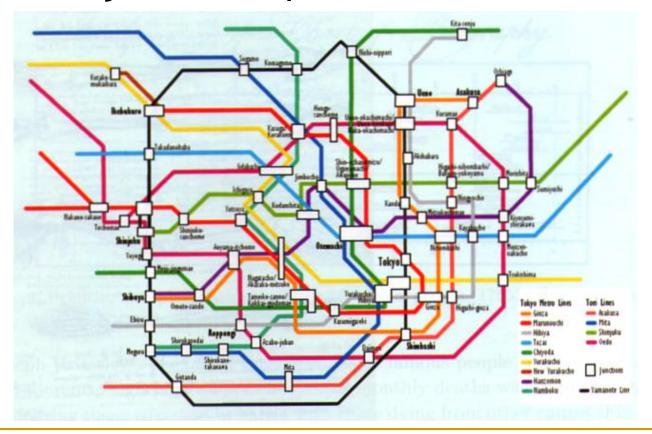


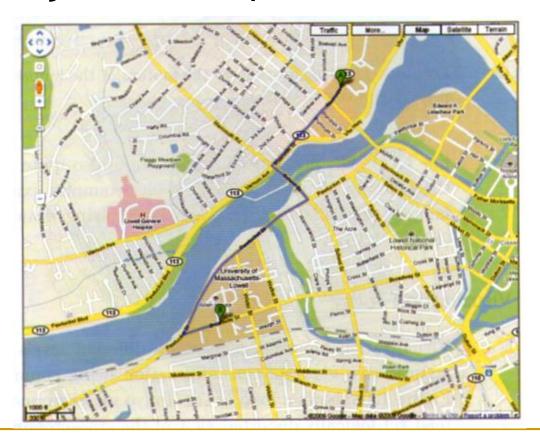
Guerra da Crimeia 1853 a 1856

 Azul representa as mortes por doenças; vermelho representa as mortes de ferimentos em batalha; e o preto representa outros tipos de morte



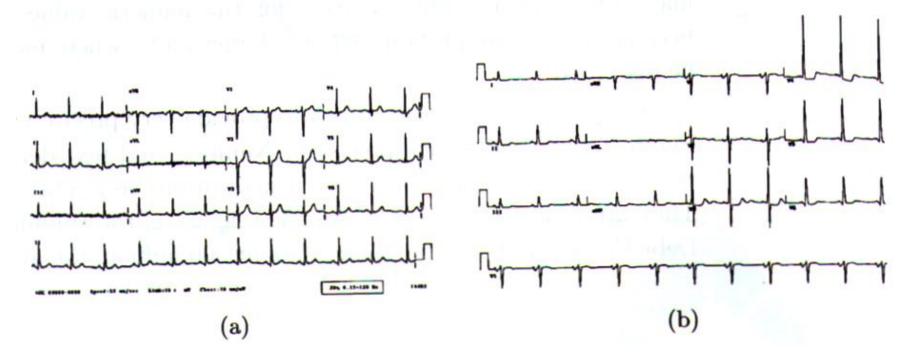
Guerra da Crimeia 1853 a 1856

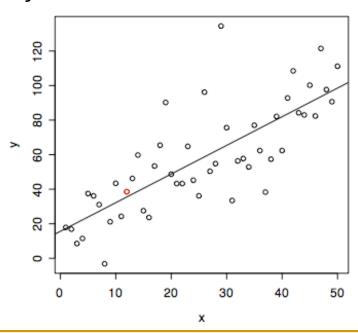

 Visualizações do corpo humano elaboradas por Da Vinci (1510)


Visualização de mapas de metro

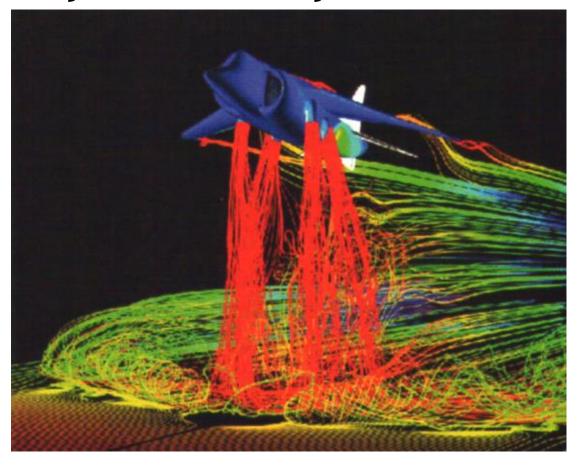
Visualizações de mapas

Gráficos


Por exemplo, o valor diário do Bitcoin


- Interpretação de eletrocardiogramas
 - Um paciente adulto (a) e um paciente de 83 anos com problema cardíacos (b)

- Gráficos de dispersão para análise de dados
 - Apesar de ser possível calcular a linha de regressão e descobrir o comportamento dos dados, a visualização permite uma análise mais detalhada
 - É possível identificar ao espalhamento, os dados discrepantes e outras informações


Visualização do corpo humano

Visualização de simulações

Referências

- Ward, M., Grinstein, G. G., Keim, D. Interactive data visualization foundations, techniques, and applications. Natick, Mass., A K Peters, 2010.
 - Capítulo 1
- Robert Spence. Information Visualization:
 Design for Interaction. 2nd Edition. Pearson:
 Prentice Hall, 2007
- Alexandru C Telea. Data visualization: principles and practice. Boca Raton: CRC Press, 2015.

Referências

- [Lyman & Hal, 2003] [Lyman & Varian, 2003] Peter Lyman and Hal R. Varian, How Much Information, 2003; ww2.sims.berkeley.edu/research/projects/howmuch-info/
- Michael Friendly's web site
 - http://www.datavis.ca/
- [TAN, 1999] Text mining: The state of the art and challenges. 1999. Disponível em citeseer.ist.psu.edu/tan99text.html (acessado em 2006.08.10)
- [Tanaka, 1998] Jennifer Tanaka, Drowning in Data, Newsweek,4/28/98, p. 85

Referências

[Williams et al. 95] J. G. Williams, K. M. Sochats, and E. Morse. "Visualization." Annual Review of Information Science and Technology (ARIST) 30 (1995), 161–207

- Aulas de visualização da wiki.icmc.usp.br
 - Prof. Dr. Fernando Paulovich (ICMC/USP)
 - Profa. Dra. Maria Cristina Ferreira de Oliveira (ICMC/USP)
 - Profa. Dra. Rosane Minghim (ICMC/USP)

